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SUMMARY OF RESULTS

The investigation of the usefulness of resonant orbits for Geodesy

has resulted in the following conclusions:

1.

For the determination of high degree and order (£ = 8) terms
in the geopotential, resonant orbits will be two or three, or
more orders of magnitude better (in the sense of smaller
standard deviations) than nonresonant orbits as long as

(£ - m)is less than about five. The exact figures depend
upon the orbit in question.

Eccentric resonant orbits will yield about two to three times
more constants per orbit than circular or nearly circular
resonant orbits.

Large injection velocity errors, e.g., 20 ft/sec, do not
seriously degrade the accuracy of the determination.

The problem of separation of the effects of the constants
from each other is less critical for resonant orbits than

for nonresonant orbits. If observation of multiple satellites
is required for separation of constants, small differences
in eccentricity are as effective as large differences in in-
clination.

For constants in the range (8, 8) - (15, 15), high inclinations
(iz= 50°) only are useful.

Having established the importance of resonant orbits in comparison

to nonresonant orbits, it is recomimended that an error analysis be per-

formed whose goal is the determination of the absolute accuracy with which

geopotential constants can be obtained from observation of satellites on

eccentric resonant orbits.



{. INTRODUCTION

The purpose of this study has been to obtain quantitative estimates
of the relative usefulness of resonant and nonresonant satellite orbits for
determination of geopotential constants. The study has established, as
seen in the summary, that resonant orbits will be far more useful than
nonresonant orbits for determination of many of the high degree and order

terms in the geopotential,

The technique of analysis used in this study was to compare covari-
ance matrices of the unknown geopotential constants obtained from simu-

lated observation of both resonant and nonresonant orbits.

This technique presents extreme problems unless great care is taken.
The problems arise from the extremely long orbital arcs that must be
considered if the high degree terms in the geopotential are to be determined.
In this study, orbital arcs of up to 3900 revolutions were considered. The
ability to rapidly compute trajectories and partial derivatives of simulated
observations with respect to geopotential constants over such long arcs is
in itself a formidable requirement, quite apart from the error analysis.
For nonresonant orbits, 'analytic approximations are possible, leading to
an efficient means of computation. But for eccentric resonant orbits, no
analytic approximation of sufficient accuracy exists. A numerical integra-
tion is required. By appropriate choice of dependent variables, a high-
speed computation scheme was possible that permitted orbit computation
at speeds up to 6000 revolutions/min of IBM 7094 computer time. This is
about 400 times faster than conventional techniques. Indeed, this study
would have been impossible (except at very greatly increased cost) without

the high-speed orbit computation program developed at TRW Systems.

Also considered in this study were the effects of an injection velocity
error, data rate, data span, and simultaneous observation of multiple
satellites. These cases were studied in terms of the changes in the appro-

priate covariance matrices.

Finally, graphs have been prepared that permit the analyst to quick-
ly determine which inclinations are optimum for determination of the geo-

potential constants appropriate to a particular resonant orbit.



2. SATELLITE MOTION THEORY

The phenomenon of resonance in artificial satellite motion manifests
itself in the form of extremely large, very long-period along-track oscil-
lations in the motion of the satellite. A detailed discussion of orbital

resonance is given in Appendix A of this report.

Mathematically, resonance appears in the form of small divisors
in the first order variation of parameters solution to the equations of
motion. The small divisors do not imply any particular infinite or wild
behavior. Rather, the assumption under which the customary solution is
obtained simply breaks down whenever the order (m) subscript of a tesseral
harmonic and the mean motion of the satellite (expressed in revs/day)

are in the ratio of integers.

To illustrate exactly how this occurs, let us consider the perturba-

tions of the semimajor axis by a tesseral harmonic of degree and order
£, m).

The equation for the variation of the semimajor axis, a, of an orbit

is (Reference 17)

e - (2.1)

where

is the mean motion, M is mean anomaly, and R is the disturbing potential
function. The use of equation (2.1) requires that R be expressed in terms

of the Kepler elements. Reference 17 gives

cos (f -m) even
l . l (0-2p) w+ (€ -2ptg)Mtm(2-6 - N N.(2.2)
181nl(ﬁ-m) odd



The quantities a2, e, i, Q, w, M are the usual Kepler elements. sz
and )‘Zm are the coefficients associated with a spherical harmonic (¢, m).

These are related to the C s, S notation by
Im?® "im

1/2
2 2
Jlm = ¢ <Clm + Slm )
S
R -1 Im
)\Em = = tan _—Cz (2.3)
m

The quantity 6 is the sidereal time of Greenwich. The inclination function
Fﬂmp(i) arose when the potential was rotated into the satellite orbit plane.
The eccentricity function Gl q(e) is a more convenient form of the Hansen
Coefficient and is the result of the conversion of the potential from ex-

pression in terms of true anomaly to mean anomaly.

Note that Equation (2.2) for Rﬁm expresses the potential as a har-
monic series in the mean anomaly. For resonance problems, where the
resonance is identified by the ratio of the order subscript of a tesseral

harmonic and the mean motion of the satellite, this form of the potential

is very useful.

Let us now obtain da/dt for a particular harmonic component (p, q)
of a particular tesseral harmonic of degree and order ({, m). From Equa-

tions (2.1) and (2.2),

£
da = 2 Hae . . .
(8?) =12 771 Yt Fomp® CGppgle) © ¢ -2p+aq)
Impq a
. (£ -m)even
- sin
. (£ -2p)wt{l -2p+tgq)M+m (Q2-0- )\zm)].(z.4)
+cos

(£ -m)odd
Equation (2.4) is seen to have the form

da _ . .
('dT) =3, Fla e 1) glw, My, 8, %, ). (2.5)
£mpq



A first order integration of this equation is possible under the following
assumption, viz., that the perturbations due to tesseral harmonics are so
small that the effects of tesseral harmonics can be entirely neglected in
the calculation of their effects. This is equivalent to regarding tesseral

harmonic effects as linear forced oscillations about an intermediary orbit.

Under this assumption f(a, e, i) is considered constant; the changes
in g(w, M, 2, 6, )\Zm) are taken to be only those due to the central force
term and the second zonal harmonic. Then separating the variables and

integrating Equation (2.4) yields

_ 2 € -2p+q) b2 Jlm Ffm (1) Glpq(e)
tpq ~ ma © CPTV TR T -2p)a T W - 2p +q) M+ m(2-8)]
(£ -m)even
cos
{ I [(1-2p)w+(£-2p+q)M+m(SZ-6—)\£m)]. (2.6)
sin
(¢ - m)odd

This solution will be valid as long as the divisor term

(€ -2plo+ (€ -2p+q)M+m(Q-9) (2.7)

is not very small or zero.

The meaning of this small or zero divisor is clear. When the divi-
sor is small or zero, the sine or cosine argument of the term in (da/dt)zmpq
changes slowly or not at all. This implies that the perturbation due to
the particular harmonic component (£, m, p, q) will grow steadily and
change only over a long period, rather than quickly go through a small
cycle. Thus the solution Equation (2.6), breaks down because the assump-

tion of small perturbations is voided.

Considering the divisor, Equation (2.7), since w and Qare always

small compared to M and 6, Equation (2.7) will be small or zero when
(2 -2p+q)M ~me
or

(£ -2p+q) = (2.8)

m
S



where M has been expressed as s revolutions/day ( 9= 1 revolution/day).
Thus the resonance phenomenon occurs, as stated previously, whenever
the order (m) subscript and the orbital frequency of the satellite are in

the ratio of integers.

For the nonresonant orbits considered in this study, orbit computa-
tion was performed by approximate analytic solutions as Equation (2. 6).
But for eccentric resonant orbits an analytic solution is not possible ex~

cept under very special conditions. A numerical solution is required.

The customary numerical solution to the equations of motion of an
artificial satellite is a numerical integration technique involving approxi-
mation of derivatives by finite differences. Such schemes require the

smallest number of derivative evaluations for one prediction interval.

Finite-difference methods are based upon the fact that a smooth
function can be approximated by a Taylor series of appropriate order over
a given integral. The orbit is integrated by successive applications of
this series in a step-wise manner until the boundary is reached. In orbit
computation, for a scheme that carries sixth derivatives (differences),
about 90 - 100 steps/orbit are required to avoid truncation error in the
eighth significant digit. Many steps are required because orbital motion
is periodic. The integration scheme is essentially polynomial extrapolation,
and a polynomial can fit a periodic function only over a limited range of

the independent variable.

Thus, the numerical integration step-size is controlled by the high
frequency (short period) contributors to the equations of motion. If de-
pendent variables could be found that had no high frequency variation,
large integration steps would result. The polynomial extrapolation would

be accurate over a larger range of the independent variable.

For computation of resonant orbits for this study, the mean Kepler
elements were chosen as dependent variables. Since the mean elements
have no short period variation, large integration steps (up to 80 revolu-
tions were possible. This mean element numerical integration was ac-
complished by integrating the variations in the Kepler elements for the

very long period (i.e., resonant){({, m, p, q) components of the geopotential.



The nonresonant (£, m, p, q) components were igndored. As will be seen
in Section 4, this omission results in a conservative estimate of the use-

fulness of eccentric resonant orbits for geodesy.

The equations for the variations of the Kepler elements are (Refer-

ence 17)

de _ (1-¢b) @R (____2 1
dt 2 oM 8w

na e
di _ cos i OR 1 oR
dt na2 (1- 62)1/2 sini oM na.2 (1 —62)1/2 sin i 0%
do ____-cosi R, (1-¢9'"% or
dt nal (1 ‘82)172 ving O 22 . de
ase _ 1 SR
dt 2 (1 SV

2 2

dM _ W (1-e7) R (t-e7) BR
dt ~ _3/2 2 d9a 2 e

a na e na e

Using the potential function, Equation (2.2), and the condition that

(4 -2p+q)= =

for resonance, the pertinent ({, m, p, q) - sets can be determined and the

equations of motion integrated for these terms.



3. ORBIT SELECTION

The evaluation of resonant versus nonresonant satellite orbits for
use in the determination of given constants, Cﬂm and Sim’ requires com-
parison of the best choice of resonant and nonresonant orbits from among
those that are useful. For a given value of ({ , m), we wish to choose a
resonant or nonresonant orbit that will yield the most accurate estimate
of Clrn and S!m’ using the techniques pertinent to analysis of either re-

sonant or nonresonant orbits.

In the study, the comparative value of resonant versus nonresonant

orbits was obtained directly from calculated values of the quantities

cr?‘(unknown)
c?(observation)

appearing in the diagonal of the covariance matrix (ATA)-i. The precise

inclinations to be used for resonant orbit were obtained indirectly from
calculated values of the acceleration of the mean anomaly M due to the
effect of the various dominant tesseral harmonics. Such quantities Mlmpq
give an indication of the magnitude of along track displacement to be ex-

pected in a given time.

Calculation of the matrix (ATA)“1 is discussed in Section 4. The

quantity Mﬂmpq due to a single tesseral harmonic V!Zmpq is
i _ .3 n o, F O, b, )o@ )
Lmpq 2 a Impqg {m {mpgq Im
where
‘lepq = (@ -2p)w + { -2p+g)M+m(2-6)
For a resonant orbit 4’2 = 0, and
mpq
£ . (£ -m)even
. m ae ‘ -sin |
Mlmpq =-3 s M ;\I—H— Jlm Fﬂmp(l) C}qu(e) cos LrJZmpq !
(£ -m)odd



where s = number of revolutions/day. The various accelerations Mﬁmpq
will combine in some complicated way for a given orbit and, as the
along track librations due to resonance build up, the angles lbzm will
vary slowly through considerable ranges. Instead of analyzing the re-
sultant effect in detail, a practically impossible task because of the very

large number of terms considered, the amplitudes

‘e m a'ez
maximum Mlmpq =-3 s M a£_+3 Jﬁm Fﬂm(l) Gﬂpq(e) (3.1)

were calculated and used as a basis for evaluating the contribution of a

single harmonic term V on the observable along track displacement.
fmpq

The actual magnitude of this along track displacement due to Vlmpq
will vary according to how close the geographical longitude of the node is
to one of the stable points of resonant libration. Thus, it might be thought
that a suitable choice of )\O, the initial mean longitude of the ascending node
must be made to insure that there will be strong observable librational
effects from each of the tesseral harmonics under inve%tigation. However,
it has been shown (Appendix A) that the longitudes of the stable points of a
tesseral harmonic component mepq move along the equator at a rate % @,
This, together with the fact that resonant tesseral harmonics occur in

pairs with stable points moving in opposite directions

A% Y \
fmpq’ Amp' (-q)

at the rate o @ obviates the need to place )\o at any best value. The

changes in w due to the second zonal harmonic insure that over a period

of a few months, strong perturbations due to the critical terms will occur.

The secular effects of the second zonal harmonic were, of course, included

in this study.

More important than any choice of )\O from the standpoint of mission
and vehicle design is the choice of semimajor axis, eccentricity, and in-
clination of the resonant orbit. The value of the semimajor axis, a, is
determined by the fact that the orbit be resonant, or nearly so, with one
or more terms of the geopotential. However, we are free to choose the
value of the eccentricity in such a way as to maximize observable reson-
ance effects, so long as e does not exceed

e * hr‘n.in

= ¢« —_—
®max a ’




where hmin = minimum possible altitude of perigee of a drag-free orbit,
Approximate values for the resonantsemimajoraxis, aag’ and for e
(with h .

min
Table 3-1. Exact values for 2 s must be obtained from the condition

max
=a /8fors<l4andh . =0.08a for s =15) are given in
e min e

that the orbit have a repeating ground track.

Elementary computer programs were devised to calculate tables of
the functions Fﬂ {e) and G, (e). It was found that in all cases except
mp Ipq
s = 1 the functions (Gzpq(e)loccurring as factors in the expression for
II.\/.IE | are monotone increasing functions of e in the interval 0 <ese .
mpq max
Therefore, the best choice of eccentricity for a resonant orbit, the choice
which will in fact maximize all resonant 1.\/.[2 , will be e = e . Even
m max

in the case s = 1 most of the G (e) are monotone, and those that are

£pq
not are no more than an order of magnitude smaller at e = € hax than at

their maximum value throughout 0 = e = € ax'

The reasons for choosing e = € ax 8° further: although resonant
terms Vﬂmp for which g = 0 will have their effect even if e = 0, the
effect of terms for which q # 0 will vanish as e becomes smaller. Since
it is desirable to obtain information on as many resonant terms of the

geopotential as possible from one orbit, larger values of e are preferred.

The effect of inclination is considered next. Figures 3-1 to 3-21
are semilogarithmic graphs of the maximum value of lM}Zmpql for the
dominant resonant Vﬂm 's for s = 2tos = 15. Eccentricity in each case
was {ixed at e = € hax and ‘M ' is displayed as a function of in-

o o Impq max
clination for 0° £1<90°. Values of Impq were included for which

I =15andf <=m + 5
m=s, 28

g= -1, 0, +1.

It is shown in Appendix A that terms for |q |>1 have only small effect.

Known values of the constants up to (12, 12) as reported by Kaula
(Reference 18) were used in Equation 3.1. For values of the constants

not listed in Kaula, the expression 10-6/1 2 was used for the normalized

sz, Sﬂ quantities. Values of the constants calculated in this way agree
m

well with the known values and should yield a useful estimate of IM!Zmpqlmax'

10



Table 3-1. Approximate Value for the Semimajor Axis

S (REVS/DAY) q s (ae; APPROX.) € ax (=1 -
1 6.6 .8
2 4.16 .73
3 3.18 .65
4 2.62 .57
) 2.26 .50
6 2.00 .44
7 1.80 .37
8 1.65 .32
4 1.52 .26
10 1.42 .21
11 1.33 .15
12 1.25 .10
13 1.20 .06
14 1.13 .01
15* 1.08* 0*

*THE VALUE OF € o FORs = 1515 BASED ON hmin =0.08 a,; THE SATELLITE
WOULD HAVE TO BE VERY DENSE TO BE CONSIDERED DRAG FREE.

11




For the cases of special interest in this study (s = 8), it can be
seen from inspection of the graphs that resonant effects are negligibly
small for the lower values of inclination (say, i < 400). In fact, 40°<i<80°
would seem to be about the best values for inclination, bringing strong
effects from virtually all resonant terms in all cases with s 2 8. The
exact choice of i depends on which specific coefficients Cp, 2nd Sﬂm are

sought.

The effect of choice of eccentricity must be mentioned again. As
the value of s increases, the value of € ax decreases, becoming 0. 01
for s = 14; for s = 15, we have had to lower hmin to 0.08 earth radii and
set e = 0, requiring a dense satellite to overcome drag. Because of the
very small values of € hax resulting from the higher values of s, the
factor Glpq(e) in the expression for Mlm will become smaller (vanish-
ing small for terms in which q # o). This lessening of detectable effects
for high s can be observed inthe graphs of Mﬂmpq for s =13, 14, and 15
and is reflected also in decreasing utility of such orbits, as reported in

the results (Section 5).

The best choice of orbit elements for a geodetic satellite in a non-
resonant orbit is somewhat simpler than in the resonant case. In the case
of nonresonant orbits, there is no restriction on the orbit elements other
than to place the orbit outside the atmosphere. The aim is to choose ele-
ments that will place the orbit at all times where it will be the most strongly
perturbed by irregularities of the geopotential. The orbit chosen for the
nonresonant cases was a circular orbit placed at the lowest possible alti-
tude at which drag effects may be neglected. This leaves the choice of
inclination. The resonant (£, m, p, q) sets of the geopotential were re-

garded to be a random sample of terms VE: (terms with q = o will be

Mpq
the only important ones because of the choice e = 0). The correctness of
this assumption was verified by calculation of covariance matrices for

several inclinations.

The resonant orbit selection graphs, Figures 3-1 through 3-21 were
prepared with a fixed value of eccentricity in every case. However, this
does not negate their use for orbits of other eccentricities. The graphs
show plots of the absolute value of the maximum values of the acceleration

of the mean anomaly. Since the inclination function has zeros and changes

12



of sign (not shown on the graphs), the semi-log plots show regions of very
sharp decline and rise in the absolute value of M. These areas to be
avoided are solely due to the effect of inclination and thus will be there
regardless of eccentricity. Suitable inclinations can be chosen from these

graphs for orbits of any eccentricity.

The effect of eccentricity on Figures 3-1 to 3-21 will be to change
the values of the|M| indicated, particularly for those cases with q # o.

Such cases would be entirely eliminated if eccentricity were made zero.

To use the graphs definitively for other eccentricities, the follow-

ing procedure can be followed.

First, choose inclination. Then, multiply the IM| figures by

G
Ipq

Gﬂ q (eccentricity of graph)

(new eccentricity)

p

This will divide out the graph value of the eccentricity function and replace
it with the new one and will yield then the correct relative amplitudes of

the |M| for the chosen inclination.

An important result of this study was the discovery that terms with
m/s = 2 are very important for eccentric resonant orbits. This is strictly
due to the eccentricity and hence greatly enhances the importance of mod-
erate and highly eccentric orbits for geodesy. Terms for m/s = 2 up to

m = 14 have been included.

Finally, a significant effect is to be noted from the graphs between
the cases s = 12 and s = 13. Because of decreasing permissible eccentri-
city, beginning with s = 13, the terms with |q| # o begin rapidly fading in
importance compared to the g = o term. This occurs because as previously
noted, the eccentricity function Gﬂpq(e) is proportional to e U for low e
and hence goes to zero for zero e. This fact substantially reduces the

usefulness of resonant orbits for s > 12 revolutions/day.

13
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4. ERROR ANALYSIS

The figure of merit for the comparison of resonant and nonresonant
orbits in this study was the covariance matrix of the solution vector of
geopotential constants. The advantage of the covariance matrix as a
figure of merit is that it enables one to ascertain the effect of a large
number of variable factors on the quality of a proposed orbit determina-
tion. In this study, the effects of period error, data rate, data span, and
observation of multiple satellites on the covariance matrices of the reso-

nant cases were studied.
The matrix equation expressing the orbit determination problem is
given by

SR = AbX, + B6Z, + N (4.1)

where 8R is a column matrix of actual observations minus the reference
observations. A is an n x p matrix, the elements of which are the partial
derivatives of the observations (range, azimuth, elevation, etc.) with
respect to the reference state vector at some epoch. (This state vector
includes only the geopotential constants for this study). B is annx m
matrix, the elements of which are the partial derivatives of the observa-
tions with respect to the systematic errors. Systematic errors include
the uncertainty in radar station location, biases in the observational data,
and so forth. 6XA is a column matrix {p x 1) of deviations between the
actual state vector at epoch and the reference state vector at epoch

(ESXA = XA - XR). 6ZA is a column matrix (m x 1) of systematic errors

and N is a matrix (n x 1) of the assumed Gaussian random noise with zero

mean and known variance.

For this study, assume that 6ZA = 0. Then Equation 4.1 reduces

to
BR = AOX, + N (4.2)

If W is a diagonal matrix whose elements are the reciprocals of the variances
of the radar observations, then the weighted-least-squares estimate of the

deviation from the reference (without a priori information) is
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T -1, T
= &
6XE (A WA) A~ WOR. (4.3)
Substitution for 8R from Equation 4.2 yields
_ AT -1 T
6XE - 6XA = (A WA) A~ WN. (4.4)

The covariance matrix of the error in the estimated state vector due to
tracking is

A ) ] T
o = E(6Xp - 86X, )(6X - 6X,)". (4.5)

Substituting Equation 4.1 into Equation 4.5 and making the assumption

that E(NNT) = w™ !, yields

A= aTway !, (4.6)

The tracking normal matrix is then the inverse of the tracking covariance

matrix, such that

-1 T

S = (A = A" WA. (4.7)

T T)

The square roots of the diagonal elements of the covariance matrix are the

standard deviations of the p components of the state vector.

In this study, the weighting matrix W was taken as the identity matrix.
. . : 2
Thus the diagonal elements of the covariance matrix are equal to ¢ (unknown)/
o2 (observation). The square root of this quantity was taken as the figure

of merit.

If the covariance matrix is made to have unity diagonal terms, then
the off-diagonal terms are correlation coefficients. Consideration of these
quantities yields important insight into the conditioning of an orbit deter-
mination problem. The conditioning of the resonant satellite geodesy

problem is explored in the results (Section 5).

This study is aimed at an evaluation of the relative usefulness of
resonant and nonresonant orbits for geodesy. Therefore, many simplify-

ing assumptions were possible.
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First, the solution vector contained only the geopotential constants
as unknowns. This restriction causes very optimistic results for nonre-
sonant orbits and pessimistic results for resonant orbits, particularly
those with orbital frequency above 12 revs/day. The reason for this is

straightforward.

Effects of tesseral harmonics on a near-Earth nonresonant orbit
are very small, ranging from at most a few hundreds of meters for the
largest effect of the low degree terms such as (2, 2) to the order of a few
tens of meters or less for very high degree terms. These effects, par-
ticularly for high degree terms, are comparable to such error sources
as data biases, station location uncertainties, radiation pressure effects,
and so forth. In the real world, we would expect these factors to seriously
affect the determination of geopotential constants from nonresonant orbits.
In contrast, the effects of resonant tesseral harmonics on resonant orbits
are enormous compared to such error sources. Thus, neglect of these

sources should be relatively much less important for resonant orbits.

Another factor leading to underestimation of the usefulness of
resonant orbits is the neglect of short period effects in their computation,
For high altitude resonant orbits, such as those with orbital frequencies
of four, five, or less revs/day, the short period terms are very small and
do not contribute much information, but for low altitude resonant orbits,
for example, those with orbital frequencies of 12 revs/day or more, the
resonant orbits are almost identical in character to the nonresonant
orbits. Thus, the long period resonance effects are like extra sources of

information.

Another way of expressing this is that for the pertinent resonant
terms, low altitude resonant orbits experience short period perturbations
of the same order of magnitude as nonresonant low altitude orbits plus
additional very large resonant effects. Neglect of the short period terms
for low altitude resonant orbits then must result in a conservative estimate

of the usefulness of resonant orbits compared to nonresonant orbits.

A final simplifying factor in this analysis was the choice of data
type. In both cases, a geocentric observer measuring along track posi-
tion was assumed. This observation type is similar to conventional angle
measurements and, since the same data type was used for both resonant

and nonresonant orbits, a comparison is meaningful.
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As previously indicated for nonresonant orbits, the partial derivatives
of the observations with respect to the geopotential constants were obtained
from analytic solution to the equations of motion. These solutions were
differentiated with respect to the constants. Reference 17 gives a detailed
treatment of analytic partial derivatives for orbit determination. These
have been used successfully by the author of Reference 17 for determination

of geopotential constants from real data.

For resonant orbits, partial derivatives were obtained by numerical
differencing of nominal and perturbed trajectories. It was found that for
orbital frequencies of 1 and 10 revs/day, perturbations in the constants of
2% to 5% yielded partial derivatives that were the same to at least three
significant figures. For these cases, a perturbation of 3% was used. For
an orbital frequency of 13 revs/day, much larger perturbations were needed
because of the smaller effect of resonance on this orbit, compared to the
other cases. Perturbations of 25% and 35% produced partial derivatives
that also were the same in the third significant digit. The smaller figure
was used. Note that for a 10-unknown covariance matrix one nominal and
ten perturbed trajectories must be computed. For 300 days of a satellite
with orbital frequency of 10 revs/day, 33,000 revs must be computed. The
high speed program developed and used for this study accomplished this
total calculation in about 6 min. of IBM 7094 computer time. The time

required by a Cowell-type trajectory program would be nearly 8 hours.
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5. RESULTS

In this study, three resonant orbits were considered. These are
orbits having orbital frequencies of 1 rev/day, 10 revs/day, and 13 revs/

day.

The first case, the so-called 24-hour orbit, was chosen for a spe=
cial reason. A resonant, eccentric 24-hour orbit resonates with all terms
in the geopotential. It is a matter of some interest to see actually how
many of the terms have a perceptible effect. Also, such a resonant orbit
gives a unique opportunity to determine from a resonant orbit those con-

stants with the order {(m) subscript equal to one.

The second case, 10 revs/day, was chosen as typical of those reso-
nant orbits that resonate strongly with high degree (£ = 10) terms in the
geopotential but can still have substantial eccentricity while maintaining a
drag-free perigee. The case of 13 revs/day was chosen as typical of those
orbits that are resonant with very high degree terms ( £ =13), but because
of the necessity for drag-free perigee passage can have only low or zero
eccentricity. As seen in Section 3, the magnitude of the eccentricity is
very important to the strength of the resonance phenomenon. It is the
small permissible eccentricity that causes a reduction in the usefulness 6f

resonant orbits with s = 13, where s is orbital frequency.

Let us consider the 24-hour case first, Figure 5-1 shows the figure-
of -merit, ¢ /o _ for 24 -hour and near-Earth nonresonant satellite
unk, " obs.

cases, both chosen to maximize the effect of the constants sought.

The inclination of 20° for the 24 -hour satellite case was selected
from the appropriate graph for 24 ~hour satellites. The inclination of 300
for the nonresonant orbit was found by experimentation, that is, a variety
of covariance matrices for the nonresonant orbit were computed and the

one showing the smallest variances was selected.

The constants CZZ’ SZZ were not included in the solution vector be-
cause these particular constants are known very accurately from observa-
tions of both resonant and nonresonant orbits. Also, there is a serious

separation problem for (2, 2) and (4, 2) for nonresonant orbits.
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Figure 5-1 seems to suggest an unexpected result, viz., that for
determination of low degree and order tersseral harmonics, a 24-hour
orbit offers no advantage over a nonresonant orbit. However, there are

factors which make this a pessimistic interpretation of the results.

As mentioned elsewhere in this report, the nonresonant effects of
tesseral harmonics are very small and hard to observe., They are read-
ily obscured by systematic errors. This study does not include consid-
eration of these very important errors. Thus the results for the nonreso-
nant orbit are probably quite optimistic. Only by observation of many non-
resonant satellites at different inclinations over very long arcs has it been

possible to determine these tesseral harmonic coefficients.

A glance at the column of results for the resonant-24-hour orbit in
Figure 5-1 shows that the figure of merit aunk./oobs. does not decrease for
the smaller constants at the end of the list. (The figures in parenthesis
are the orders of magnitude of the constants.) This is not too surprising
a result, since for 24-hour orbits the effect of a tesseral harmonic falls
off very rapidly with increasing degree. The acceleration M that produces

£+
3 . The semimajor

the along track perturbation varies inversely with a
axis, a, is 6.6 earth radii for the 24-hour orbit. Except for a few low
degree terms in the geopotential, the 24 ~hour orbit cannot be very useful

for geodesy because of this rapid drop off.

Let us now turn to a case of more immediate interest, the 2,4 hour
orbit. This orbit is strongly resonant with terms of order (m) 10. Figure

5.2 shows the result.

The columns comparing the figure-of -merit for the resonant and
nonresonant orbits are in striking contrast with Figure 5-1, Note that
the figure-of -merit is two or three orders of magnitude smaller for the
resonant cases. Since the figure of merit is proportional to the standard
deviation of the unknown, the resonant solution is far superior to the non-
resonant solution, especially so since this analysis has treated nonreso-

nant orbits optimistically.

This result, in such contrast to the result for the 24 -hour case, has
a simple explanation. A glance at the graphs in Section 3 showing the

accelerations of mean anomaly will show that the along track perturba-
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tions due to the resonant tresseral harmonics on 2. 4- and 24-hour orbits
are comparable in magnitude, in spite of far smaller magnitudes of the

coefficients. However, for nonresonant orbits, because of the very short
period of even the longest period effect (period = 1/10 day), the perturba-
tions on the nonresonant orbit have decreased with increasing degree ({),

decreasing the utility of the nonresonant orbit for geodesy.

For both the low degree (24=hour resonance) and high degree (2.4-
hour resonance) cases, both data rate and data span were varied, The
effect of data rate was just about that predictable on theoretical grounds,
that is, doubling data causes halving of variances. For the nonresonant
orbits, changing data quantity by increasing observation arc rather than
reducing data interval had a similar effect. But for resonant orbits, the
variances are more sensitive to data span. This, too, has a simple ex~
planation. The resonance phenomenon is very long period, taking many
months to develop into really large effects. By contrast, the nonresonant
perturbations are essentially just reptitions of periodic phenomena. For
the resonant case, information of a new character emerges as the various
tesseral harmonic effects interact and distort each other. For the reso-
nant 2. 4~hour orbit, the figure-of-merit ounk/oobs dropped by a full order
of magnitude upon maintaining constant data rate but increasing data span
from 150 to 300 days. Further increasing the data span to 450 days also
had a favorable result, although not as large. To ascertain the data span
necessary to determine the constants to some required accuracy from
real data will require a careful error analysis that simulates the real
world as accurately as possible, However, it is likely that observations
over at least three to six months are required to allow the resonance phe-

nomena to build up to large amounts.

The final case studied was the case of s = 13 revs/day. This case
differs significantly from the s = 10 case because of the small permiss=~
ible eccentricity (e = 0.06). This has the effect of reducing the perturba-
tions (as can be seen from the graphs in section 2) and makes the orbit
less useful for geodesy than the case of 10 revs/day. Comparing Figures
5-2 and 5-3, note that the figure -of-merit in the s = 10 case is about five
orders of magnitude larger than the constant, and about 10 to 12 orders

of magnitude larger for s = 13, Thus the s = 13 case will be much less
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useful. A decrease in usefulness is to be anticipated from the decreasing
effect of resonance with increasing orbital frequency and subsequent low-
ering of eccentricity, but such a drastic difference was not expected and
definitely calls for further study. Regardless, the s = 13 case must be
more useful than a nonresonant orbit for the same constants. Our model
for the resonant orbit ignores short period effects. Since the s = 13 reso=-
nant orbit has such small semimajor axis, it is practically identical with
a geodetically useful nonresonant orbit. Thus, the resonance effects are
really additional effects and will cause the resonant orbit to be more use=
ful. It was for this reason that a nonresonant orbit was not compared for

the s = 13 case.

The comparison of the s = 10 and s = 13 cases indicates that for con-
stants of order 8, 9, 10, 11, and probably 12, eccentric resonant orbits
will be very useful for determination of constants, yielding possibly one-
fourth to one-third of the constants in the range (8, 8) to (15, 15)., But for
constants of orders 13, 14, 15, because of decreasing permissible eccen-
tricity, the effects of only a smaller number of constants will be impor -
tantly enhanced. However, as seen, the cases of high degree, especially
13, 14, 15, so nearly resemble nonresonant orbits of geodetic usefulness
that these orbits will still be more useful for geodesy than nonresonant

orbits,

Of great interest are two remaining concerns of this study, viz, the
effect of an injection velocity error, and the effect of combining observa-

tions of two satellites.

Figure 5-2 shows the effect of injection velocity errors of 10 ft/sec
and 30 ft/sec upon the figure-of -merit of the case with s = 10 rev/day.
The entire error was assumed to affect the period. Note that an error of
10 ft/sec has almost no effect on the results, and an error of 30 ft/sec
has an effect of only about a factor of 2 in most cases. These large ve-
locity errors are certainly within the range of many injection guidance

systems and offer the possibility simple, of low cost satellites.

In the determination of geopotential constants, the question of sep-
arability of the constants from each other must arise, for this has been

a great problem in the past for reduction of real data.
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For nonresonant orbits, the problem arises because the dominant
effects of two harmonics with the same order (m) subscript and degree
subscripts () differing by two oscillate with the same frequency. The other
effects of the terms in question are very small and practically unobserv=-
able. Hence, separation is obtainable only by simultaneous processing

of data from satellites at many inclinations.

For resonant orbits, the ill-conditioning problem should be less
severe, because the perturbations are not simple linear additions to an
intermediary orbit. The effects of terms with the same order (m) sub-
script are not exactly in phase with each other. This has been demon-
strated by studying the correlation matrices associated with the covar-
iance matrices of this study. The correlationsare not1.0, although they are
occasionally as high as 0,999. This seems very high, but figures as high
as this are often encountered in orbit determination problems from which
useful information is obtained. What remains to be seen is the separ-

ability of the constants in the presence of systematic errors.

Because ill conditioning may be a problem if resonant orbits are to
be of the utmost usefulness, it is important to study means of overcoming
it. The basic means is to simultaneously consider data from two or more
satellites with different orbital elements. The effects of the constants
will bear different relationships to each other for the different orbits and
hence, if considered simultaneously, will uncouple. The problem of ill

conditioning was studied extensively for the case of s = 10 rev/day.

The three orbital elements whose variation is meaningful for the
eccentric resonant orbit are a, e, and i. Only very small changes in
semimajor axis are permissible to avoid completely destroying the reso-
nance phenomenon, A case was studied in which the semimajor axis was
varied by an amount corresponding to a perigee velocity change of 30 ft/
sec., This amount is known not to seriously degrade the accuracy of the
determination. Combining these cases, each of 300 days duration with
one data point per five days resulted in only the result attributable to a
doubling of the amount of data. The amount the semimajor axis could be
varied was simply not great enough. Far different results were obtained

with variation of e and 1i.
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Figure 5-4 shows the effect of simultaneous reduction of data from
two satellites with s = 10 revs/day at (1) inclinations of 55° and 70° and
(2) eccentricities of 0.21 and 0.18, The combined estimates were ob=-
tained by addition of the appropriate normal matrices to form the normal
matrix of the combined problem. This is equivalent to the assumption
that the cases are uncorrelated. The nominal results for the single 2.4-
hour orbit are repeated here for comparison, The effect is greater by
orders of magnitude than would be expected from a mere doubling of the
quantity of data, and the effect of eccentricity could be enhanced even
more by a larger difference in eccentricity. If multiple satellites must
be observed, there are real advantages to having them in the same orbit
plane with different eccentricities rather than the usual situation of mul-
tiple orbit planes. Of course variations in eccentricity are limited to
those resonant orbit cases having substantial eccentricity, viz., s <12

revs/day.

The question of data types must also be considered. The resonance
phenomenon manifests itself primarily as a large along-track effect. Thus,
the choice of along~track position as data type for this study. This data
type resembles, for example, Baker-Nunn Camera or Minitrack data, but

absolute conclusions should not be drawn directly from the results,

Since this study was a relative one, it could be accomplished very
economically by making many simplifying assumptions that had the effect
of giving conservative estimates of the usefulness of eccentric resonance
orbits for geodesy. One should not take the figures of merit for this study
and convert them to standard deviations of the constants. This is espe-
cially true for the g = 10, 13 cases. For the case of low altitude orbits,

a geocentric observer is, of course, much farther away from the satel-
lite than an observer on the surface. For a given angular error, being
farther away magnifies the amplitude of the implied error in position.

It is also well known that the motion of the observer can be very impor-

tant in orbit determination problems.

At first it might seem that angular data is the obvious choice be-
cause it directly measures the phenomenon of interest, that is, along
track position. However, range and range-rate data are extremely accu-

rate and of course, do not suffer the requirement of camera data that the
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observer be in darkness and the satellite in sunlight, Also, electronic
data are much more abundant. It is not really possible to generalize
about the optimum data type without a detailed study of the orbits in ques-
tion, tracking networks, required accuracy of constants, and many other

factors that affect data reduction problems.

In conclusion, this study has demonstrated that resonant orbits will
be very useful for determination of many, but not all, of the constants in
the range (8, 8) to (15, 15), To determine all the constants in this range
will require a combined program of observation of both resonant and
nonresonant orbits. Because the resonance effects are so large and
of such an utterly different character than the effects of tesseral har-
monics on nonresonant orbits, the constants obtained from resonant or-
bits will be extremely important. A large number of constants obtained
very accurately from resonant orbits will result in a great reduction in

the difficulty of the overall problem.
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RECOMMENDATIONS FOR FURTHER STUDY

Having established that eccentric resonant orbits will be very useful

for determination of geopotential constants in the range (8, 8) to (15,15),

the next logical step is a detailed error analysis that simulates the real

world as closely as possible. This analysis should answer the following

questions:

1.

What are the significant error sources and their a priori
covariances ?

What are the effects of both solved-for and unsolved-for
systematic errors on the quality of constants obtained
from observation of satellites on resonant orbits ?

What tracking network, data type, and observation schedule
is optimum for a resonant satellite geodesy program?

How many satellites at different inclinations or eccentricities,
if any, are needed to reduce the effect of ill conditioning to
an acceptable level ?

What are the precise injection guidance requirements for
a resonant satellite system ?

The answers to these questions will permit an accurate evaluation

of the absolute accuracy to which constants can be obtained from satellites

on eccentric resonant orbits.
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APPENDIX A

Theory of Orbital Resonance

It is well known that repeating ground track (circular) satellite
orbits exhibit a pendulum-type motion called libration due to tesseral
harmonics in the potential of the earth. This paper shows that eccentric
orbits, with periods commensurrste or nearly commensurate with the rotation
period of the earth are slso subject to resonance effects, although their
ground-track may not be repeating becaws e of the rotation of the line of
apsides.

Eccentric orbits are strongly perturbed by certain Fourier components
of tesseral harmonics (called critical terms) which appear to rotate with
respect to a planetary observer, Such critical terms produce not only
libration (i.e., pendulum-like motion), but force the orbit to drift with
the angular velocity with which the criticel term rotates. However, when
the amplitude of libration exceeds m/m, where m is the order of the tesseral
harmonic in guestion, the '"pendulum turns over"; instead of libration,
circulation appears with an entirely different drift velocity, period, and
amplitude.

In contrast with circular orbits, eccentric orbits are strongly per-
turbed by many critical terms. At small eccentricities or low inclinations
a single term dominates, and a good analytic approximation is available.
Near the "eritical" inclination it is possible to combine the effects of all
criticel terms having the same frequency, permitting analytic solution. But
the general case requires numericel integration for solution because the total
effect of all the criticzl terms is not simply the sun of the individual
effects. By numerically integrating only the long-period variations in the
mean orbital elements, several hundred orbits can be calculated in a second on

a high-speed automatic digital computer.

* This appendix was tsken from "Resonance Effects on Eccentric Satellite

Orbits," by G. S. Gedeon, B. C. Douglas, and M. T. Palmlter Journal of
tre Astronautlcal Sclences July-August 1967. -




INTRODUCTION

Synchronous satellites on circular orbits are extensively used for
communication and navigation purposes. This fact justifies the great
attention that was given in the litcrature to orbital resonance which
affects these satellites (see References 1-16). Subsynchronous satel-
lites on eccentric orbits have found less application, though the
Molniya series has eccentric orbits with periods very close to 12 hours.
The existence of resonance for eccentric orbits is, of course, an inter-
esting problem, since subsynchronous satellites on eccentric orbits do
not have repeating ground-tracks due to the rotation of the line of

apsides, except at the critical inclination.

This paner addresses itself to the above problem by generalizing
the treatment followed in Reference 13. It is found in the present paper
that commensurate satellites on eccentric orbits resonate with a greater
number of tesseral harmonics than those on circular orbits. By observing
such satellites over long arcs in time, it is possible that many tesseral

harmonics could be determined with high accuracy.

On strictly or very nearly commensurate orbits the resonance is deep;
all elements change which in turn affects the perturbing function (which
is expressed with the Kepler elcments of the orbit) especially through the
large change in the mean anomaly. This can be regarded as a "feedback”,
and the resultant motion is a pendulum tvpe of libration or circulation.
For orbits far from commensurabilitv the resonance is shallow, the changes
are small, and the feedback on the perturbing function can be neglected.
The observable motion is an along-track oscillation with an impressed

period of a few days.

This paper will treat the case of deep resonance only. The effects of
shallow resonance on eccentric orbits has been treated by Gedeon and Dial

(Reference 16).



DISCUSSION

1. EQUATIONS OF MOTION

Kaula's formulation of the potential field of a planet in terms of

the Kepler elements of the satellites is (see Reference 17):

2=2 m=0 p=0 q=-»
where
" ae 2 “cos Q) (¢-m)even
vV = = — i) G J
Lmpq a Fzmp(l) zpq(e) 2m sin
"7 (2-m)odd
and

o
<
]

[(% - 2p) w+ (P - 2p+qg) M+ m (2 -6 - Alm)].

In the above equation a, e, i, Q, w, M are the osculating Kepler elements,

¥ D(i) is the inclination function and G (e) is the eccentricity func-

2m L
tion. Expressions for these functions (wh?gh can be incorporated into a
digital computer program) are given in Ref 17. For ease of analytical
investigation, however, these are also tabulated in Ref 17 for 0< & > 4 and
-2 <q < 2. The function quq(e) is of the order eIQI: therefore the summa-
tion for q need be over only‘a few values near zero for orbits of low or

moderate eccentricity. The rest of the symbols appearing in Equations (1),

(2), and (3) are the following:

u = gravitational constant
a, = mean equatorial radius
r = position radius
8 = 6 + 6t = right ascension of Greenwich
o
Zm’AR = coefficient and longitude of the major axis of symmetry
m

of the (%, m) spherical harmonic

(1)

(2)

(3)



Let us define now a number s by the following equation:
80 -Q) = M +w. (4)

Then s is essentially the number of satellite revolutions per Earth rotation.

If s = s + As where s, is an integer, then

-;:(M+w) - @ -0 = ’3.'—0(9 -0) = Ay )

The quantity A, can be interpreted as the rate of change of the osculating value

N
of the longitude of the node of the mean satellite. Note that for eccentric
orbits the node of the true satellite is quite different from that of the mean

satellite, and if As = o, the orbit is exactly commensurate.

With Equation (5), the time derivative of the argument of the disturbing

function, Vl can be rewritten as
mpq
' = -2 -ﬁ y N . . :
Ir
E,—2p+q='r'n—, N

S
o

the short period terms disappear, leaving only long period ones for commensurate
and near commensurate orbits. The indices which satisfy Equation (7) define the

critical Vanq perturbing terms. For such terms:

$oo= mAN - quw . (8)

Note that for strictly commensurate orbits XN = 0,
0



Because the rates Q, M and u do not necessarily remain constant under the

action of the tesseral harmonics, it is necessary to consider the acceleration

. g e
XPJ = +';::(hd + w). (9)

Designating the Keplerian elements by a where { = 1,...,6, the second

rate of change of an element can be written as

2 6
d a, Z 8d; da. 86‘i
ae 3a, dt ' Bt (10)

j=1 .

or in more detail as

a 3o .
= — 11) + s,
dtz oy da, ] (1)

Now a; and hence (aai/3¢) are of order ng; and ¢ for commensurate orbits and
critical indices is very small. The order of the products in the summation is

2 . . . .
O(Jm) with the notable exception of (5M/3a)a. This partial contains a zero

order term

, (12)

which is multiplied by a as given by Lagrange's Planetary Equation (see, e.g.,
Ref 17

dt na oM (13)



Se

Thus, wnen the condition for resonance i met, the second derivative of the

mean anomaly can te approximated clocely by

. v
- 3 Im
M = _.;Z.E _m_BS

Since M is the only second derivative which is of order J

tm’

it will dominate

Equation (9). Equation (14) 1is approximate only, because terms O(Jlm‘L) and

O(J“‘)2 have been neglected.

doting that M = s A, (BEquation -), Egquation (1.) can be put in the

following form:

A

|
E

(o]

\

1 3 2e :
N® 3z E : (4-2p+q (?) Famp'? C1pg!® Ttm

~-sin Y

(£ -m)even

cos ¢ (1 -m)odd

Noting that 2 - 2p + q = m/so for the critical indices, u = n2a3 and n

Equation (15) can be written as

A = z:m(-m)z
N ~ Pl
mpq

sin [y + (1 + £)n/2] (-m)even

sin [¢ + ¢ n/Z]

where
X (ara ) 1/2
Pompq ~ m [BIFQmp(i)Gqu(e)IJQm days,
and
+1 5
£ = y i Fppt Gy (o) [<] 0.

The summation is for the critical indices which define y for commensurate

orbits as the integral of Equation (8)

(£ -m)odd

I
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(14)

(15)

(16)

17)

(18)



*e

dl = m(AN - Alm) - qw. (19)

Equation (16) for such indices becomes

2
.o 2 : 2w/ , -
)\N:_ - m w/m sin m(AN' Atm). (20)
where
" (£ -m)even
N (1 +86) 72 )
tm © Mm " m T | +3u + 3t (21)
2m

(£ -m)odd

In Reference 13, q was zero because of the restriction to circular orbits.

Thus, Tgm, (which was interpreted as the stable node), was stationary. For

eccentric orbits with q # 0, T”m rotates with the & o uniform angular velocity.
¥

T
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2. SOLUTION FOR A SINGLE CRITICAL TERM

Equation (20) for a single critical term can be regarded as the differeﬁtial
equation of an m-fold pendulum with a forcefield rotating with (% w) angular vel-
ocity in the equatorial plane. Transforming to a coordinate system rotating with
this velocity eliminates the explicit appearance of the time. Thus, in the ro-
tating frame, Equation (20) becomes autonomous. (This is a similar situation to
that of the restricted three body problem where the Lagrangian is rheonomic in an .
inertial coordinate system, but scleronomic in the system rotating with the angular

velocity of the two massive bodies.)

The transformation consists of the introduction of a new variable, x,

by the following definition:
N im (22)

Since o is negligibly small, AN = x and Equation (20) for a single tesseral

becomes
X + mu2 i =0
o Sin mx = , (23)
where
2n/m
Y% TP . (24)
fmpq

Equation (23) admits a first integral

2 2
x = C+ 2uo cos mx , (25).

with C evaluated from the initial conditions, i.e.,

. 2 _
C = 2 - 2u cos m (X -2
(o] N T
o Qno) . (26)




L X1

. where

A = ;\ + 4 w,
No No m (27)
is the modified initial drift rate which accounts for the advancement of the
perigee.
If
C < 2u2
o
the longitude of the node of the mean satellite relative to the rotating frame
will librate as a pendulum, because for an x = a defined by
cos ma = - c
> P4 s (28)
u
]
X becomes zero in Equation (25). For this case the Iintegral can be written in
. the form
-2—4u2(sinzm . 2 m )
X = o T a - 8ln T X}, (29)
and the period can be obtained through the introduction of the auxiliary variable
# defined by
8ing - sin m x/2
B sin ma/Z (30)
Then Equation (29) can be integrated between fixed limits as:
~/2
d 2
P = IF f 2 ; 2 /2 = PQmqu(k) ’ 31
Toimea Jy 1 - k% sin‘g] (L)



. where le represents the period of small amplitude libration (see Figures 1,2),
Pq

and k is the modulus defined by

“C 42 2 1/2
K inm 3 o o
= sinm%s = .
2 Auz
o
Tie quantity K(k) is a complete elliptical inteszral of the [First kind.
If
Cc > 2u2 .
e}
)’(2 is always positive and the pendulum turns over, i.e., the longitude of the
node of the inean satellite circulates in the rotating coordinate system. In this
case, Equation (25) can be readily integrated as
2n/m
P = dx (33)
o E+ 2u2 cos mx 172
0
. The above equation can be also converted into the form
p - kK '
P mpaK(K) (34)
where
n/ e "
L")
K(k') = IT72
0 [l - k' 51n2¢'] (3%)
is a cornlste eiliptical integral o7 toz JloIt rri,
1/2
4u 2
k' = o 21
C Z k > (36)
+ Zu0
and
m
¢ =« (37)




.y

From the period the mean relative drift rate is

_ 2n/m
b T TP (38)
The absolute drift rate, Uy is given by
= q
Yab T Yt m® (39)

To find the amplitude of the angular irregularity of the overturning pendulum,

Equation (33) must be rewritten in a non-complete elliptic integral form:

Qn’l
k! d¢' k' (I
t = = P F(k ’ d’). 40
N J [l _ k,znn2¢ .3T/T Zr ~ fmpq (40)
The inverse of the above equation is #' = £(t). If gf'r = % ut is sub-
r
tracted, the result is the angular irregularity
(41)

A = f(t)-%urt.

To obtain the amplitude of the angular irregularity of circulation, the first

derivative of Equation (41) should be equated to zerc.

dag!
pry = f(t) - %UP = U, (42)
But , 1 mu,, 2 .2 1/2
f'(t) = T o [1 - k"%sin" @] (43)

A-11



Thus the angular position for the maximum of the deviation is obtained from

2 1/2
sing' = L |1 [ /2 / (44)
m k? K(k')
The corresponding amplitude is obtained by calculating t from Equation
(40) and Aé'm from
M = g1 oI
m m > urtm . (45)

Small amplitude librations showing orbital inclinations versus periods in

yYedrs are given in Figures 1 apd 2.

A-12



T11¢2¢

A pue 17022

A 103 S31qiQ Inoy gz JO SpPOT1ag uorieiql] apniirdury [yeUS

18

$33¥930 NOILVNITONI 11830

oS

oY
-+

*T andTy

d 3 ' S¥VIA NI QO34

©
bdwy

oot

13

A-



*geptedy 1O SUTT 945 JO UOTFBR0Y ;O pPOTI8d
241 pue Oﬁmm> J0J S1TGJIQ Jnou »T JO SpoTasJ UOTABRIQT] epnaTTdm TTeug *Z @anITJ

$33¥93a NOILVYNITONI 11840

ok 08 oL 09 05 O € 0z ot 0
- + + h + t + 4 t + 0
OHNmm_ - e — G -
-~
ssptsdy Jo auT] " \ T 2
3143 JO UOT4BQOY JO potddd d — — — e
\\
— — —
o x g = Py —
Nu.l
—T 9 <
m
fad
0)
e o
Zz
=<
= JI 0
z
wv
L -
_ o~
w0
-> m..m
2
\ v
\ / d £q10TIqua007
™ \ /
3n~| g
- 01

A-14



.

3. INTERPRETATION OF THE LIBRATION PHENOMENON

The phenomenon of libration is considerably more complicated than the
forced vibration of a mass-spring system, where the approach to resonance

manifests itself with an every-increasing amplitude.

In the case of libration there is a feedback between the orbit and the
perturbing tesseral harmonics through Equation (9). The critical harmonic
changes all the elements, but especially the mean anomaly. Thus, resonance
affects the forcing function. The ensuing motion resembles that of a pen-
dulum which oscillates or turns over on its axis. The amplitude is deter-
mined by the initial position and velocity, the period by the orbital

sarameters, the coefficient of the critical harmonic, and the amplitude.

An attempt will be made now to give a physical analogy of the librational
phenomenon. First, it must be noted that the potential field is character-
ized by only two numbers JQm and Azm’ but in the above treatment four indices
(2, m, p, g) were used to define resonance. This can be explained by the
analogy to harmonic analvsis. The disturbing function is expanded into a
Fourier series in the mean anomalv. Eguation (1) is the result of a Fourier
series expansion of the standard form of the potential, after a coordinate

transformation which introduced p.

For an analogy of libration, Figure 3 was conceived. It reproduces the
gross characteristics of the phenomenon, although the time history of its
motion is not tne same. On Figure 3 the equatorial irregularity associated
vith a J_ _ is represented by a 'hoop" with m "highs' and m "lows" upon which

2m
a frictionless roller is moving under the influence of a central spring. The

¢ = -1 case, which produces positive central perturbing forces, can be simu-

lated bv olacing the roller inside the path with the spring under compression.

Then tue stable equilibrium nodes will bLe at the highs.

For orbits with qw = 0 (circular orbits, or critical inclination) the
force field of the critical term appears to be stationary for an observer

on the earth. For this case the hoop is also stationary.

A-15
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Figure 3. Simulation of the Gross Characteristics of Libration
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If the roller is initially at a low, it is in equilibrium. But if it
is displaced by a mew initial position or by an initial velocity or a com-
bination of both, it will start to oscillate around the stable node and

its period will increase with the amplitude reaching infinity for a = n/m.

If q& # 0 then the force field of the critical term is time dependent.

On Figure 3 the "hoop" must be turned on to rotate with a (% w) rate to sim-

ulate the field of the critical term. Now if X = A + L4 is small
No No m

and the roller was close to the stable equilibrium position the result is

a libration with greater amplitude than the initial displacement. Note,

however, that the roller will be carried along by the hoop. When the am-

plitude calculated by Equation (28) becomes greater than n/m the roller

goes over the nearest high and begins to circulate. Since it circulates

and is not carried along by the hoop its mean velocity will be the differ-

ence between the mean circulation velocity and the hoop velocity.

Physically, the satellite librates because the gravitational field
rotates with the planet. Because the satellite period is commensurate
with the Earth'. rotation period, this feeds energy in and out of the
satellite. Due to this energy change the semi-major axis of the orbit
changes, which changes the period. A change in period affects the along-

track position which in turn changes the longitude of the ascending node.

A-17




4., INFLUENCE OF THE INITTAL CONDITIONS

a) Initial Longitude, XNo'

For critical tesserals with q = O the influence of initial longitude can
be easily assessed since the angular distance between the initial longitude of the

ascending node of the mean satellite, A and the nearest stable node Tlm is the

No
amplitude. Where q # O the problem is more complicated because the differential

equation of motion contains the time explicitly.

A numerical example was chosen to illuminate such a case: 12 hour, 30 degree
inclined, e = 0.5 orbit, perturbing critical tesseral term V220-1' Small amplitude
libration period from Fig. A.1 is P, ; = 3.163 vears and the period of the perigee

advancement from Fig. A.2 is P = 6.007 years. With these

.

u, = 1.993 and w = 1.046 rad/year Ago = ~-523. rad/year

Starting with (XNO - Yimo) = 0 and continuing with incrementing the angular
distances from the stable node, a point is found where cos 2a = ~1. Up to this
point the longitude of the ascending node of the mean satellite librates with in-
creasing a amplitude and increasing period in an equatorial coordinate system

rotating with -.523 rad/year angular velocity.

The point where cos 2a = -1 corresponds to !} - = 74.7 degrees. The

No xEmo
amplitude is 90 degrees and the period is infinity. Beyond this point the pendulum
XN circulates and the behavior of motion 1s markedly changed. At the unstable node,
for example, the energy constant is C = 2,246, the modulus is k' = .967, and the
complete elliptic integral of the first kind !s K(k') = 2.784. Thus, the period
becomes P = 2,71 years. If the )N circulates in 2.71 years {its mean drift velocity

is u_ = 1.16 rad/year.

The amplitude of the circulation irregularity in case the "pendulum turns over"
is the maximum deviation from the mean. This can be calculated as ¢' = 58.6 degrees,
m

F(k', ') = 1.241, £ = .604, A¢'m = 18.5 degrees.

Figure 4 shows the amplitudes, periods and drift rates for different initial

values of the node. Figure 5 shows the time history of libration due to V ob-

220-1
tained by the RESORB Program, which numerically integrates long-period contributions
to Lagrange's Planetary Fquations. The stable node is qu = 167, since § = -1 and
y - O‘ LLO

Q
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It can be seen that with increasing (ANO -X o ) the amplitude and period
o :

L
increase and the drift rate remains constant and equal to the - 2 value.

But at 75 degrees AN circulates, the drift rate changes drasticaily and
the libration curve is skewed (it is not symmetrical). At 90 degrees

the amplitude of circulation is the smallest because the pendulum rotates
the fastest. Amplitudes, periods, drift rates obtained from these runs

are in perfect agreement with Figure 4.

Runs made with ANO at equal distance from the stable nodes revealed

a perfect symmetry of the motion with respect to the stable node.

Figure 6 illustrates librations of a 12 hour, e = .5 eccentricity orbit
at the critical inclination under the influences of V2211. The stable ncde
is at 77 degrees. As expected, there is no drift velocity because & = 0
and the orbit is perfectly commensurate for all initial values of the node
except that of 167 degrees which corresponds to the unstable node. At
this point the slightest amount of targeting error (in the semi-major axis)
makes the pendulum turn over, as can be seen on Figure 6. As soon as the

initial longitude of the node has passed the unstable node, the libration

in the normal manner appears, as shown by the xVo = 197 degree curve.
i

Note that for the circulation the mean drift velocity is not the small
drift velocity caused by mistargeting, but the much larger value of the

mean circulation minus the initial drift rate.

For eccentric orbits, charts similar to Figure 4 can be made for V390_2
and V3722 with + 60 O/year apparent force field rotation. It will be seen

later that Ay circulates for almost all Mo values, producing a very small
absolute drift rate. This, coupnled with the fact that P320_2 and P3222 >>
diminishes considerably tlie importance of these higher terms for all

p
3210
values of ANO except in the vicinity of the stable node. Finally, for
critical tesserals with Iqi > 2 computer runs were made with RESORB, which
show hardly any trace of resonance, because of the fast circulation rate

and the small eccentricity function.
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b) Initial Drift Rate, iNo #0

If the semi-major axis of the orbit is not such that Equation (5)
yields As = 0, the orbit is not strictly commensurate. As long as As << 1

resonance is effective, producing either libration or circulation.

To illustrate the effects of near, as opposed to exact, commen-
surability, a 12 hour 30 degree inclined circular orbit was chosen. Be-
cause the orbit is circular, we can restrict it to q = 0, and the critical
term for a planetary observer is stationary. Figure 7 shows the calculated

libration periods and amplitudes as functions of (ANO - ) for zero

%32
initial drift velocity, i.e., for strictly commensurate orbits, and for

a 309/vear initial drift rate. It can be seen that in the region + 60
degrees around the stable node the orbits in the second case still librate.
The effect of the initial drift rate is an increased amplitude which is
already 30 degrees at the stable node. In the + 30 degrees neighborhood

of the unstable node the motion of XN becomes that of a pendulum turning
over, and AN circulates producing a drift rate. Figure 8 is calcuiated for
609/vear initial drift rate which is enough to turn over the pendulum from

everywhere except within + 4 degrees of the stable node, and for 90°/year

initial drift rate for which AN circulates for any initial position.

Figure 9 presents machine run results for 12 hour 30 degree inclined

e = 0.5 eccentricity orbits with V220—l alone. Since qw = 0 the critical
tesseral is rotating producing a -300/vear drift rate for strictly commen-
surate orbits also. As long as the XNo = iNo + 1/2 w does not carry AN

over the "hump"

the drift rate remains the same. ©Note that the iNo = -69.35
drifts with -= 1/2 » but the iNO = 469.35 produces circulation and its drift
rate is not -30° but 70°/vear. With increasing initial drift rate the
irregularity decreases and resonance becomes less and less pronounced. See

Reference 16 for the case when the first term in Equation (11) becomes

dominant.



Period, Years

Years

Periou,

‘o " 30%/year

2 %
AMPLITUDE
o -+ + —t- + ¢ 4- +- o
i S Py 0 ) t 100 120 "o wo u:o
STABLE UNSTABLE. STAB\&
Nooa NoO® noo|
. THEORFEIICAL VALUES OF AMPLITUDES, PERIODS, AND DRIFT
Figure 7.

VELOCITIES OF 12 HR., 30° INCLINED CIRCULAR ORBITS

1
DUE TO \3210_

A-24

Amplitude

Amplitude and Drift Velocity/Year



Period, Year

Tear

Pvriod,

w0 L J . L 3 '“
X = 607/Year
No
s T - »
DAIFT
[ 4L - GO
PR J <+ 4D
PEAIOCD
z + + 20
AMPLITUODE
[ 4 + + 4 -+ - < o
° ) “ ) ' wo 120 140 .o wo
'Tx!ndl UNSTABLE 1rnl'm1i
NOOE NODE NOOE
ONIFET
1o T + 100
R <r”
¢ :Nn = 9" 'V.ar
b + <+ &O
qQ < 4
2 4 PEMOD 4‘/—__-:b 2
AMPLITUOE
° y ‘ ~+— — + +— . °
2 20 40 e0 t loo 120 140 w0 (80
STASLE UNETABLE 81110&]5
NOOE NOOR NOOE
Figure 8. THEORETICAL VALUES OF AMPLITUDES, PFRIODS, AND DRIFT

VELOCITIES OF 12 HR.,

A-25

30© INCLINED CIRCULAR ORBITS

Amplitude and Drift Velocity/Year

Amplitude and Drift Velocity/Year



17022\ 51 mnd SNOILY ¥dIT

SAVA ‘INIL
oYy oot

*A 8andtyg

8S1LI-

2

&
L v

&

oLOl = ~<
orxzLr =%
9 o

O [a0]

SLIGYO ALIDIYINADDAS * = @
QANITONI 0 WH 21

fKR'eNn
= (Wsh/e) ’ﬁ

b QOt

OO

sazuoaa Ny
JLITTILYS NVEW FHL 40 IAON ONIANIDSY AHL 0 FANLIONOT

A-26



5. THE GENERAL SOLUTION

In Section 2 a solution was presented when Equation (20) contains a
single term. In the '"real world" there are always several critical tes-
seral harmonics which enter into Equation (20); and, in general, no
analytic solution is available. In some cases, however, good approximations
can be obtained by neglecting certain less important terms. These are the
low eccentricity and near equatorial orbits. The low eccentricity orbits
were treated thoroughly in Reference 9, where it was shown that one of the
harmonics will dominate the motion. For near equatorial orbits again one
tesseral will dominate the motion because the inclination function is zero
except for (£ -m) even and p = % (2 -m), which eliminates a number of

critical terms.

For the "critical' inclination Equation (20) becomes autonomous. This

allows an analytic solution.

Equation (20) can be written in the following form

2
. - (2n) 1 , . o T
A i > sin [JsOXN is Aon ] (46)
o P
2,9 2,9
with j =1, 2, ... and % z_jso.

In this equation cognizance was taken of the fact that m must be an
integral multiple of s, and that the value of p is defined by Equation (7)
as soon as a pair of ¢ and q is selected. Equation (46) is still not solv-
able because of the different frequencies represented by the j values.
Fortunately, the main frequency j = 1 dominates the motion due to the rapid
decrease of field strength with 2. Thus a very good approximation can be
found by neglecting the j > 1 values., Expanding Equation (46) the following

is obtained

. 2
X=_&Q_§
N S
o}
2,9

1 . - . 3
3 [sin sy COS s A, cos S AgSin s A, ] (47)

P
29
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Introducing the phase angle y by

L sin s A
2,q PQ 2 m
tan sow = 2 (48)
2: cos s A
2 { 2m
q Pl,q
and the resultant period
1
P = (49)
1 . b Z, -— 2
{({zt 5 sin s Nom T+ [z 5 cos 3\ ]
Q,C! P 2 e} P fm
Q,Q ’ f,,q
with these Equation (47) becomes
2ﬂ/so 2
AN = -8, ( P ) sin s, (AN - ). (50)

Again we have pendulum motion, with solution in the form of an elliptic

integral of the first kind.

Figure 10 shows librations due to V

220-1 V2211° 2™ V3010

for a 12-hour

orbit at the critical inclination, obtained by the RESORB program. Eccen-

tricity was chosen maximum with the constraint that perigee be still drag-

free. The curves shows pure libration and a stable node at 212 degrees,

which agrees with the value calculated by Equation (47). 1t is interesting

to note that this stable node falls in the midpoint between the stable nodes

of Vo1 and Vgp1g =

180 degrees = 257 degrees.

167 degrees and the stable node of V

220-1 = 77 degrees +

For the rest of the cases the system is not autonomous and there are

several critical tesserals which produce libration periods of equal order

of magnitude. No analytic solution was found. Figure 11 showed examples

obtained by the RESORB program for different initial conditions. Figure 12

shows the influence of mistargeting for only the two main components of J

22°

The inclination and the initial node were selected such that the amplitude

and the period should be the same for both terms.

caution, the result is hardly predictable.

In spite of this pre-
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